Source code for tcutility.job.xtb

from tcutility.job.generic import Job
from tcutility import spell_check
import os
from typing import Union


j = os.path.join


[docs] class XTBJob(Job): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.xtb_path = 'xtb' self._options = ['coords.xyz'] self._scan = {} def _setup_job(self): os.makedirs(self.workdir, exist_ok=True) self._molecule.write(j(self.workdir, 'coords.xyz')) if self._scan: with open(j(self.workdir, 'scan.inp'), 'w+') as scaninp: for key, value in self._scan.items(): scaninp.write(f'${key}\n') for line in value: scaninp.write(f' {line}\n') scaninp.write('$end\n') options = ' '.join(self._options) with open(self.runfile_path, 'w+') as runf: runf.write('#!/bin/sh\n\n') # the shebang is not written by default by ADF runf.write('\n'.join(self._preambles) + '\n\n') runf.write(f'{self.xtb_path} {options}\n') runf.write('\n'.join(self._postambles)) return True
[docs] def model(self, method: Union[str, int]): ''' Set the method used by XTB. This includes GFN0-xTB, GFN1-xTB, GFN2-xTB and GFNFF. Args: method: the method to use. Can be specified by its full name, e.g. 'GFN2-xTB', is the same as 'GFN2' or simply 2. ''' if isinstance(method, int): if not 0 >= method >= 2: raise ValueError(f'GFN{method}-xTB does not exist. Please choose one of GFN[0, 1, 2]-xTB.') self._options.append(f'--gfn {method}') return if method.lower() in ['gfn0', 'gfn0-xtb']: self._options.append('--gfn 0') return if method.lower() in ['gfn1', 'gfn1-xtb']: self._options.append('--gfn 1') return if method.lower() in ['gfn2', 'gfn2-xtb']: self._options.append('--gfn 2') return if method.lower() in ['gfnff', 'ff']: self._options.append('--gfnff') return raise ValueError(f'Did not recognize the method {method} for XTB.')
[docs] def solvent(self, name: str = None, model: str = 'alpb'): ''' Model solvation using the ALPB or GBSA model. Args: name: the name of the solvent you want to use. Must be ``None``, ``Acetone``, ``Acetonitrile``, ``CHCl3``, ``CS2``, ``DMSO``, ``Ether``, ``H2O``, ``Methanol``, ``THF`` or ``Toluene``. grid_size: the size of the grid used to construct the solvent accessible surface. Must be ``230``, ``974``, ``2030`` or ``5810``. ''' spell_check.check(model, ['alpb', 'gbsa'], ignore_case=True) self._options.append(f'--{model} {name}')
[docs] def spin_polarization(self, val: int): ''' Set the spin-polarization of the system. ''' self._options.append(f'-u {val}')
[docs] def multiplicity(self, val: int): ''' Set the multiplicity of the system. If the value is not one the calculation will also be unrestricted. We use the following values: 1) singlet 2) doublet 3) triplet 4) ... The multiplicity is equal to 2*S+1 for spin-polarization of S. ''' self._options.append(f'-u {(val - 1)//2}')
[docs] def charge(self, val: int): ''' Set the charge of the system. ''' self._options.append(f'-c {val}')
[docs] def vibrations(self, enable: bool = True): self._options.append('--hess')
[docs] def optimization(self, quality: str = 'Normal', calculate_hess: bool = True): ''' Do a geometry optimization and calculate the normal modes of the input structure. Args: quality: the convergence criteria of the optimization. See https://xtb-docs.readthedocs.io/en/latest/optimization.html#optimization-levels. calculate_hess: whether to calculate the Hessian and do a normal mode analysis after optimization. ''' spell_check.check(quality, ['crude', 'sloppy', 'loose', 'lax', 'normal', 'tight', 'vtight', 'extreme'], ignore_case=True) if calculate_hess: self._options.append(f'--ohess {quality}') else: self._options.append(f'--opt {quality}')
[docs] def PESScan(self, distances: list = [], angles: list = [], dihedrals: list = [], npoints: int = 20, quality: str = 'Normal', mode: str = 'concerted'): ''' Set the task of the job to potential energy surface scan (PESScan). Args: distances: sequence of tuples or lists containing ``[atom_index1, atom_index2, start, end]``. Atom indices start at 1. Distances are given in |angstrom|. angles: sequence of tuples or lists containing ``[atom_index1, atom_index2, atom_index3, start, end]``. Atom indices start at 1. Angles are given in degrees dihedrals: sequence of tuples or lists containing ``[atom_index1, atom_index2, atom_index3, atom_index4, start, end]``. Atom indices start at 1. Angles are given in degrees npoints: the number of PES points to optimize. .. note:: Currently we only support generating settings for 1-dimensional PESScans. We will add support for N-dimensional PESScans later. ''' self.optimization(quality=quality, calculate_hess=False) self._options.append('--input scan.inp') self._scan.setdefault('scan', [f'mode={mode}']) # self._scan.setdefault('opt', [f'maxcycles=50']) for i, d in enumerate(distances): self._scan['scan'].append(f'distance: {d[0]},{d[1]},{d[2]}; {d[2]}, {d[3]}, {npoints}') for i, a in enumerate(angles, start=i): self._scan['scan'].append(f'angle: {a[0]},{a[1]},{a[2]},{a[3]}; {a[3]}, {a[4]}, {npoints}') for i, a in enumerate(dihedrals, start=i): self._scan['scan'].append(f'dihedral: {a[0]},{a[1]},{a[2]},{a[3]},{a[4]}; {a[4]}, {a[5]}, {npoints}')
@property def output_mol_path(self): return f'{self.workdir}/xtbopt.xyz'