Source code for tcutility.job.xtb

import os
from typing import Union

from tcutility import spell_check
from tcutility.job.generic import Job

__all__ = ["XTBJob"]

j = os.path.join


[docs] class XTBJob(Job): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.xtb_path = "xtb" self._options = ["coords.xyz"] self._scan = {} def _setup_job(self): os.makedirs(self.workdir, exist_ok=True) self._molecule.write(j(self.workdir, "coords.xyz")) if self._scan: with open(j(self.workdir, "scan.inp"), "w+") as scaninp: for key, value in self._scan.items(): scaninp.write(f"${key}\n") for line in value: scaninp.write(f" {line}\n") scaninp.write("$end\n") options = " ".join(self._options) with open(self.runfile_path, "w+") as runf: runf.write("#!/bin/sh\n\n") # the shebang is not written by default by ADF runf.write("\n".join(self._preambles) + "\n\n") runf.write(f"{self.xtb_path} {options}\n") runf.write("\n".join(self._postambles)) return True
[docs] def model(self, method: Union[str, int]): """ Set the method used by XTB. This includes GFN0-xTB, GFN1-xTB, GFN2-xTB and GFNFF. Args: method: the method to use. Can be specified by its full name, e.g. 'GFN2-xTB', is the same as 'GFN2' or simply 2. """ if isinstance(method, int): if not 0 >= method >= 2: raise ValueError(f"GFN{method}-xTB does not exist. Please choose one of GFN[0, 1, 2]-xTB.") self._options.append(f"--gfn {method}") return if method.lower() in ["gfn0", "gfn0-xtb"]: self._options.append("--gfn 0") return if method.lower() in ["gfn1", "gfn1-xtb"]: self._options.append("--gfn 1") return if method.lower() in ["gfn2", "gfn2-xtb"]: self._options.append("--gfn 2") return if method.lower() in ["gfnff", "ff"]: self._options.append("--gfnff") return raise ValueError(f"Did not recognize the method {method} for XTB.")
[docs] def solvent(self, name: str = None, model: str = "alpb"): """ Model solvation using the ALPB or GBSA model. Args: name: the name of the solvent you want to use. Must be ``None``, ``Acetone``, ``Acetonitrile``, ``CHCl3``, ``CS2``, ``DMSO``, ``Ether``, ``H2O``, ``Methanol``, ``THF`` or ``Toluene``. grid_size: the size of the grid used to construct the solvent accessible surface. Must be ``230``, ``974``, ``2030`` or ``5810``. """ spell_check.check(model, ["alpb", "gbsa"], ignore_case=True) self._options.append(f"--{model} {name}")
[docs] def spin_polarization(self, val: int): """ Set the spin-polarization of the system. """ self._options.append(f"-u {val}")
[docs] def multiplicity(self, val: int): """ Set the multiplicity of the system. If the value is not one the calculation will also be unrestricted. We use the following values: 1) singlet 2) doublet 3) triplet 4) ... The multiplicity is equal to 2*S+1 for spin-polarization of S. """ self._options.append(f"-u {(val - 1) // 2}")
[docs] def charge(self, val: int): """ Set the charge of the system. """ self._options.append(f"-c {val}")
[docs] def vibrations(self, enable: bool = True): self._options.append("--hess")
[docs] def optimization(self, quality: str = "Normal", calculate_hess: bool = True): """ Do a geometry optimization and calculate the normal modes of the input structure. Args: quality: the convergence criteria of the optimization. See https://xtb-docs.readthedocs.io/en/latest/optimization.html#optimization-levels. calculate_hess: whether to calculate the Hessian and do a normal mode analysis after optimization. """ spell_check.check(quality, ["crude", "sloppy", "loose", "lax", "normal", "tight", "vtight", "extreme"], ignore_case=True) if calculate_hess: self._options.append(f"--ohess {quality}") else: self._options.append(f"--opt {quality}")
[docs] def PESScan(self, distances: list = [], angles: list = [], dihedrals: list = [], npoints: int = 20, quality: str = "Normal", mode: str = "concerted"): """ Set the task of the job to potential energy surface scan (PESScan). Args: distances: sequence of tuples or lists containing ``[atom_index1, atom_index2, start, end]``. Atom indices start at 1. Distances are given in |angstrom|. angles: sequence of tuples or lists containing ``[atom_index1, atom_index2, atom_index3, start, end]``. Atom indices start at 1. Angles are given in degrees dihedrals: sequence of tuples or lists containing ``[atom_index1, atom_index2, atom_index3, atom_index4, start, end]``. Atom indices start at 1. Angles are given in degrees npoints: the number of PES points to optimize. .. note:: Currently we only support generating settings for 1-dimensional PESScans. We will add support for N-dimensional PESScans later. """ self.optimization(quality=quality, calculate_hess=False) self._options.append("--input scan.inp") self._scan.setdefault("scan", [f"mode={mode}"]) # self._scan.setdefault('opt', [f'maxcycles=50']) for i, d in enumerate(distances): self._scan["scan"].append(f"distance: {d[0]},{d[1]},{d[2]}; {d[2]}, {d[3]}, {npoints}") for i, a in enumerate(angles, start=i): self._scan["scan"].append(f"angle: {a[0]},{a[1]},{a[2]},{a[3]}; {a[3]}, {a[4]}, {npoints}") for i, a in enumerate(dihedrals, start=i): self._scan["scan"].append(f"dihedral: {a[0]},{a[1]},{a[2]},{a[3]},{a[4]}; {a[4]}, {a[5]}, {npoints}")
@property def output_mol_path(self): return f"{self.workdir}/xtbopt.xyz"